

**SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR
(AUTONOMOUS)**

Siddharth Nagar, Narayanananam Road– 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: AI TECHNIQUES IN ELECTRICAL ENGINEERING (SE) (25EE2111)

Course & Branch: M.TECH. IN POWER ELECTRONICS

Year &Sem: I-M.Tech & I-Sem

Regulation: R25

**UNIT –I
ARTIFICIAL NEURAL NETWORKS**

1	a	Define Artificial Neural Networks (ANN) and explain their basic structure.	[L2][CO1]	[5M]
	b	Describe any two common models of neural networks with examples.	[L2][CO1]	[5M]
2	a	Distinguish between single-layer and multi-layer neural network architectures.	[L2][CO1]	[5M]
	b	What is knowledge representation in neural networks? Give examples.	[L2][CO1]	[5M]
3	a	Explain error-correction learning with a simple numerical example.	[L3][CO1]	[5M]
	b	Write a short note on Hebbian learning and its principle.	[L1][CO1]	[5M]
4	a	What is competitive learning? Mention any two applications.	[L2][CO1]	[5M]
	b	Explain the concept of Boltzmann learning.	[L2][CO1]	[5M]
5	a	Differentiate between supervised and unsupervised learning.	[L4][CO1]	[5M]
	b	List any five learning tasks in neural networks and explain any one of them.	[L1][CO1]	[5M]
6		Explain the learning process in neural networks and discuss how weight adjustments improve network performance.	[L2][CO1]	[10M]
7		Examine how neural networks contribute to modern Artificial Intelligence systems with suitable examples.	[L4][CO1]	[10M]
8		Describe how knowledge is represented in neural networks. Explain distributed representation with examples.	[L2][CO1]	[10M]
9		Explain Boltzmann learning in detail. Discuss the role of stochastic neurons and energy minimization.	[L2][CO1]	[10M]
10		Explain the biological inspiration of artificial neural networks and compare them with traditional computational models.	[L2][CO1]	[10M]

**UNIT –II
ANN PARADIGMS**

1	a	Explain the architecture of a multi-layer perceptron (MLP)	[L2][CO2]	[5M]
	b	Describe how information flows during forward propagation.	[L2][CO2]	[5M]
2		Explain the Backpropagation algorithm and show how weights are updated with a numerical example.	[L2][CO2]	[10M]
3		Describe the major limitations of training MLP networks, with emphasis on local minima, learning-rate selection, and overfitting issues.	[L2][CO2]	[10M]

4	Compute the forward pass, total error, error signals, weight gradients, and the updated weights for a neural network with inputs $x_1 = 0.05$, and $x_2 = 0.10$, target outputs $t_1 = 0.01$ and $t_2 = 0.99$, learning rate $\eta = 0.5$, and sigmoid activation, perform one full Backpropagation cycle.	[L3][CO2]	[10M]
5	a Illustrate the architecture and working of a self-organizing map.	[L4][CO2]	[5M]
	b Explain competitive learning and neighborhood updating.	[L2][CO2]	[5M]
6	Explain how a self-organizing map is used for clustering and visualization of high-dimensional data. Give suitable examples.	[L2][CO2]	[10M]
7	a Describe the structure of a radial basis function network.	[L2][CO2]	[5M]
	b Explain the role of the radial basis layer and the output layer.	[L2][CO2]	[5M]
8	a Explain the concept of a functional link neural network.	[L3][CO2]	[5M]
	b Discuss how functional expansion improves network performance.	[L2][CO2]	[5M]
9	a Describe the architecture and energy function of a Hopfield network.	[L2][CO2]	[5M]
	b Explain how Hopfield network performs associative memory.	[L2][CO2]	[5M]
10	a Discuss the concept of stable and unstable states in Hopfield networks.	[L2][CO2]	[5M]
	b Explain how convergence to stable states occurs in Hopfield networks.	[L2][CO2]	[5M]

UNIT -III
FUZZYLOGIC

1	a What is the need for fuzzy logic in real-world applications? b Compare fuzzy logic and classical (crisp) logic in terms of uncertainty handling.	[L1][CO3]	[5M]
2	a Define crisp sets and fuzzy sets with examples. How do they differ?	[L2][CO3]	[5M]
	b Explain the role of membership functions in fuzzy sets.	[L2][CO3]	[5M]
3	a Describe the fuzzy set union operation with a numerical example.	[L3][CO3]	[5M]
	b Explain the fuzzy set intersection operation with an example.	[L3][CO3]	[5M]
4	a Explain the fuzzy set complement operation with an example.	[L3][CO3]	[5M]
	b What are membership functions? Describe any two commonly used types.	[L1][CO3]	[5M]
5	a Explain the triangular and trapezoidal membership functions with applications. b What are normality and convexity in fuzzy sets? Illustrate with examples.	[L3][CO3]	[5M]
	[L2][CO3]	[5M]	
6	Define fuzzy Cartesian product. Explain how fuzzy relations are constructed and represented using membership matrices.	[L2][CO3]	[10M]
7	Using the fuzzy set $A = [0.2, 0.6, 0.9]$ and fuzzy relation $R = \begin{bmatrix} 0.5 & 0.3 \\ 0.8 & 0.6 \\ 0.4 & 0.9 \end{bmatrix}$ determine the resulting fuzzy output using both the max-min and max-product composition rules.	[L3][CO3]	[10M]
8	Describe fuzzy logic and the role of linguistic variables in representing human reasoning. with suitable examples.	[L2][CO4]	[10M]
9	Explain the structure of a fuzzy rule-based system and describe the fuzzy inference process (Mamdani or Sugeno) with examples.	[L3][CO4]	[10M]
10	For the fuzzy set defined by the points (2,0.2), (4,0.5), (6,0.7), (8,0.5), and (10,0.3), Determine the defuzzified output using the center-of-gravity formula.	[L3][CO4]	[10M]

UNIT -IV
GENETIC ALGORITHMS

1	a	Explain the basic working principles of Genetic Algorithms	[L2][CO5]	[5M]
	b	Describe how Genetic Algorithms mimic natural evolution for solving optimization problems.	[L2][CO5]	[5M]
2	a	Explain binary encoding in Genetic Algorithms with a suitable example.	[L3][CO5]	[5M]
	b	Describe floating-point encoding with an example.	[L2][CO5]	[5M]
3	a	Explain permutation encoding and mention its applications.	[L2][CO5]	[5M]
	b	What is a fitness function in Genetic Algorithms? Explain the essential properties of a good fitness function.	[L2][CO5]	[5M]
4		Explain the selection and reproduction operators in Genetic Algorithms, and compare their advantages.	[L2][CO5]	[10M]
5	a	Explain genetic modeling in Genetic Algorithms and its role in optimization.	[L2][CO5]	[5M]
	b	Describe how genetic representations and operators influence the performance of a Genetic Algorithm.	[L2][CO5]	[5M]
6	a	Explain single-site and two-point crossover methods with suitable examples.	[L3][CO5]	[5M]
	b	Describe multipoint, uniform, and matrix crossover techniques and mention situations where they are preferred.	[L3][CO5]	[5M]
7		Explain the importance of crossover rate in GA performance and discuss inversion and deletion operators and their role in maintaining genetic diversity.	[L3][CO5]	[10M]
8		Describe mutation in Genetic Algorithms and explain how mutation rate affects convergence. Discuss bit-wise mutation and real-valued mutation.	[L2][CO5]	[10M]
9	a	Explain the generational cycle of a Genetic Algorithm with neat steps.	[L2][CO5]	[5M]
	b	Discuss the conditions required for GA convergence and the factors that influence convergence speed.	[L4][CO5]	[5M]
10		For the parent chromosomes $P_1 = 11001110$ and $P_2 = 10101001$: (a) Carry out a single-point crossover at position 4. (b) Then perform bit-wise mutation at a 0.1 rate by flipping one random bit in each child. Show the resulting offspring.	[L3][CO5]	[10M]

UNIT -V
APPLICATIONS OF AI TECHNIQUES

1	a	Define load forecasting and list the major types of forecasting used in power systems.	[L1][CO6]	[5M]
	b	Explain how AI-based methods (ANN, Fuzzy, GA) improve the accuracy of short-term load forecasting.	[L2][CO6]	[5M]
2	a	Describe the role of Artificial Intelligence in power system load flow studies.	[L2][CO6]	[5M]
	b	Apply fuzzy logic to explain how uncertainty in load demand can be handled in economic load dispatch.	[L3][CO6]	[5M]
3	a	Explain how an ANN model can be applied to predict optimal generator scheduling in economic load dispatch.	[L3][CO6]	[5M]

	b	Compare conventional and AI-based Load Frequency Control methods for a single-area system.	[L4][CO6]	[5M]
4	a	Analyze the differences in control strategy for single-area and two-area LFC using AI techniques.	[L4][CO6]	[5M]
	b	Discuss how AI helps in improving small signal stability (dynamic stability) under different disturbances.	[L4][CO6]	[5M]
5	a	Evaluate the performance of reactive power control using expert systems versus neural network controllers.	[L5][CO6]	[5M]
	b	Design a simple ANN-based speed control strategy for a DC or AC motor and mention its advantages.	[L5][CO6]	[5M]
6		Explain the complete process of applying AI-based techniques for short-term and long-term load forecasting. Include data preprocessing, model training, testing, and performance evaluation.	[L3][CO6]	[10M]
7		Explain how AI-driven load flow studies differ from Newton–Raphson and Gauss-Seidel methods. Discuss their advantages, limitations, and applications.	[L3][CO6]	[10M]
8		Evaluate the effectiveness of Genetic Algorithms, Particle Swarm Optimization, and Fuzzy Logic in solving the Economic Load Dispatch (ELD) problem.	[L5][CO6]	[10M]
9		Evaluate the role of AI controllers in Load Frequency Control for a two-area system, focusing on tie-line power control, damping, and dynamic response improvement.	[L5][CO6]	[10M]
10		Design a complete AI-based control scheme for speed control of DC or AC motors. Explain architecture, inputs/outputs, rule base (if any), and expected performance improvements.	[L4][CO6]	[10M]

PREPARED BY: Dr Devalraju Prasad
Associate Professor
Dept. of EEE
SIETK, PUTTUR